Schlichting conjectured that the negative K-groups of small abelian categories vanish and proved this for noetherian abelian categories and for all abelian categories in degree $-1$. The main results of this paper are that $K_{-1}(E)$ vanishes when $E$ is a small stable $infty$-category with a bounded t-structure and that $K_{-n}(E)$ vanishes for all $ngeq 1$ when additionally the heart of $E$ is noetherian. It follows that Barwicks theorem of the heart holds for nonconnective K-theory spectra when the heart is noetherian. We give several applications, to non-existence results for bounded t-structures and stability conditions, to possible K-theoretic obstructions to the existence of the motivic t-structure, and to vanishing results for the negative K-groups of a large class of dg algebras and ring spectra.
تحميل البحث