Recently Weyl fermions have attracted increasing interest in condensed matter physics due to their rich phenomenology originated from their nontrivial monopole charges. Here we present a theory of real Dirac points that can be understood as real monopoles in momentum space, serving as a real generalization of Weyl fermions with the reality being endowed by the $PT$ symmetry. The real counterparts of topological features of Weyl semimetals, such as Nielsen-Ninomiya no-go theorem, $2$D sub topological insulators and Fermi arcs, are studied in the $PT$ symmetric Dirac semimetals, and the underlying reality-dependent topological structures are discussed. In particular, we construct a minimal model of the real Dirac semimetals based on recently proposed cold atom experiments and quantum materials about $PT$ symmetric Dirac nodal line semimetals.