We establish the concept of $alpha$-dissipative solutions for the two-component Hunter-Saxton system under the assumption that either $alpha(x)=1$ or $0leq alpha(x)<1$ for all $xin mathbb{R}$. Furthermore, we investigate the Lipschitz stability of solutions with respect to time by introducing a suitable parametrized family of metrics in Lagrangian coordinates. This is necessary due to the fact that the solution space is not invariant with respect to time.