We present thermal properties and an improved shape model for potentially hazardous asteroid (162421) 2000 ET70. In addition to the radar data from 2000 ET70s apparition in 2012, our model incorporates optical lightcurves and infrared spectra that were not included in the analysis of Naidu et al. (2013, Icarus 226, 323-335). We confirm the general clenched fist appearance of the Naidu et al. model, but compared to their model, our best-fit model is about 10% longer along its long principal axis, nearly identical along the intermediate axis, and about 25% shorter along the short axis. We find the asteroids dimensions to be 2.9 km $times$ 2.2 km $times$ 1.5 km (with relative uncertainties of about 10%, 15%, and 25%, respectively). With the available data, 2000 ET70s period and pole position are degenerate with each other. The radar and lightcurve data together constrain the pole direction to fall along an arc that is about twenty-three degrees long and eight degrees wide. Infrared spectra from the NASA InfraRed Telescope Facility (IRTF) provide an additional constraint on the pole. Thermophysical modeling, using our SHERMAN software, shows that only a subset of the pole directions, about twelve degrees of that arc, are compatible with the infrared data. Using all of the available data, we find that 2000 ET70 has a sidereal rotation period of 8.944 hours ($pm$ 0.009 h) and a north pole direction of ecliptic coordinates $(52^{circ}, -60^{circ}) pm 6^{circ}$. The infrared data, acquired over several dates, require that the thermal properties (albedo, thermal inertia, surface roughness) must change across the asteroids surface. By incorporating the detailed shape model and spin state into our thermal modeling, the multiple ground-based observations at different viewing geometries have allowed us to constrain the levels of the variations in the surface properties.