Numerical study of the gravitational shock wave inside a spherical charged black hole


الملخص بالإنكليزية

We numerically investigate the interior of a four-dimensional, asymptotically flat, spherically symmetric charged black hole perturbed by a scalar field $Phi$. Previous study by Marolf and Ori indicated that late infalling observers will encounter an effective shock wave as they approach the left portion of the inner horizon. This shock manifests itself as a sudden change in the values of various fields, within a tremendously short interval of proper time $tau$ of the infalling observers. We confirm this prediction numerically for both test and self-gravitating scalar field perturbations. In both cases we demonstrate the effective shock in the scalar field by exploring $Phi(tau)$ along a family of infalling timelike geodesics. In the self-gravitating case we also demonstrate the shock in the area coordinate $r$ by exploring $r(tau)$. We confirm the theoretical prediction concerning the shock sharpening rate, which is exponential in the time of infall into the black hole. In addition we numerically probe the early stages of shock formation. We also employ a family of null (rather than timelike) ingoing geodesics to probe the shock in $r$. We use a finite-difference numerical code with double-null coordinates combined with a recently developed adaptive gauge method in order to solve the (Einstein + scalar) field equations and to evolve the spacetime (and scalar field) $ - $ from the region outside the black hole down to the vicinity of the Cauchy horizon and the spacelike $r=0$ singularity.

تحميل البحث