A Markovian lattice model for photoreceptor cells is introduced to describe the growth of mosaic patterns on fish retina. The radial stripe pattern observed in wild-type zebrafish is shown to be selected naturally during the retina growth, against the geometrically equivalent, circular stripe pattern. The mechanism of such dynamical pattern selection is clarified on the basis of both numerical simulations and theoretical analyses, which find that the successive emergence of local defects plays a critical role in the realization of the wild-type pattern.