Gate-tunable band structure of the LaAlO$_3$-SrTiO$_3$ interface


الملخص بالإنكليزية

The 2-dimensional electron system at the interface between LaAlO$_{3}$ and SrTiO$_{3}$ has several unique properties that can be tuned by an externally applied gate voltage. In this work, we show that this gate-tunability extends to the effective band structure of the system. We combine a magnetotransport study on top-gated Hall bars with self-consistent Schrodinger-Poisson calculations and observe a Lifshitz transition at a density of $2.9times10^{13}$ cm$^{-2}$. Above the transition, the carrier density of one of the conducting bands decreases with increasing gate voltage. This surprising decrease is accurately reproduced in the calculations if electronic correlations are included. These results provide a clear, intuitive picture of the physics governing the electronic structure at complex oxide interfaces.

تحميل البحث