Existence and stability of a blow-up solution with a new prescribed behavior for a heat equation with a critical nonlinear gradient term


الملخص بالإنكليزية

We consider the semilinear heat equation, to which we add a nonlinear gradient term, with a critical power. We construct a solution which blows up in finite time. We also give a sharp description of its blow-up profile. The proof relies on the reduction of the problem to a finite dimensional one, and uses the index theory to conclude. Thanks to the interpretation of the parameters of the finite-dimensional problem in terms of the blow-up time and point, we also show the stability of the constructed solution with respect to initial data. This note presents the results and the main arguments. For the details, we refer to our paper cite{TZ15}.

تحميل البحث