Detection of Faults in Power System Using Wavelet Transform and Independent Component Analysis


الملخص بالإنكليزية

Uninterruptible power supply is the main motive of power utility companies that motivate them for identifying and locating the different types of faults as quickly as possible to protect the power system prevent complete power black outs using intelligent techniques. Thus, the present research work presents a novel method for detection of fault disturbances based on Wavelet Transform (WT) and Independent Component Analysis (ICA). The voltage signal is taken offline under fault conditions and is being processed through wavelet and ICA for detection. The time-frequency resolution from WT transform detects the fault initiation instant in the signal. Again, a performance index is calculated from independent component analysis under fault condition which is used to detect the fault disturbance in the voltage signal. The proposed approach is tested to be robust enough under various operating scenarios like without noise, with 20-dB noise and variation in frequency. Further, the detection study is carried out using a performance index, energy content, by applying the existing Fourier transform (FT), short time Fourier transform (STFT) and the proposed wavelet transform. Fault disturbances are detected if the energy calculated in each scenario is greater than the corresponding threshold value. The fault detection study is simulated in MATLAB/Simulink for a typical power system.

تحميل البحث