In scientific computing, more computational power generally implies faster and possibly more detailed results. The goal of this study was to develop a framework to submit computational jobs to powerful workstations underused by nonintensive tasks. This is achieved by using a virtual machine in each of these workstations, where the computations are done. This group of virtual machines is called the Gridlan. The Gridlan framework is intermediate between the cluster and grid computing paradigms. The Gridlan is able to profit from existing cluster software tools, such as resource managers like Torque, so a user with previous experience in cluster operation can dispatch jobs seamlessly. A benchmark test of the Gridlan implementation shows the systems suitability for computational tasks, principally in embarrassingly parallel computations.