Invariance-like results for Nonautonomous Switched Systems


الملخص بالإنكليزية

This paper generalizes the Lasalle-Yoshizawa Theorem to switched nonsmooth systems. Filippov and Krasovskii regularizations of a switched system are shown to be contained within the convex hull of the Filippov and Krasovskii regularizations of the subsystems, respectively. A candidate common Lyapunov function that has a negative semidefinite derivative along the trajectories of the subsystems is shown to be sufficient to establish LaSalle-Yoshizawa results for the switched system. Results for regular and non-regular candidate Lyapunov functions are presented using an appropriate generalization of the time derivative. The developed generalization is motivated by adaptive control of switched systems where the derivative of the candidate Lyapunov function is typically negative semidefinite.

تحميل البحث