Local resilience of the $1T$-TiSe$_2$ charge density wave to Ti self-doping


الملخص بالإنكليزية

In Ti-intercalated self-doped $1T$-TiSe$_2$ crystals, the charge density wave (CDW) superstructure induces two nonequivalent sites for Ti dopants. Recently, it has been shown that increasing Ti doping dramatically influences the CDW by breaking it into phase-shifted domains. Here, we report scanning tunneling microscopy and spectroscopy experiments that reveal a dopant-site dependence of the CDW gap. Supported by density functional theory, we demonstrate that the loss of the longrange phase coherence introduces an imbalance in the intercalated-Ti site distribution and restrains the CDW gap closure. This local resilient behavior of the $1T$-TiSe$_2$ CDW reveals a novel mechanism between CDW and defects in mutual influence.

تحميل البحث