We performed comparable polarized Raman scattering studies of MoTe2 and WTe2. By rotating crystals to tune the angle between the principal axis of the crystals and the polarization of the incident/scattered light, we obtained the angle dependence of the intensities for all the observed modes, which is perfectly consistent with careful symmetry analysis. Combining these results with first-principles calculations, we clearly identified the observed phonon modes in the different phases of both crystals. Fifteen Raman-active phonon modes (10Ag+5Bg) in the high-symmetry phase 1T-MoTe2 (300 K) were well assigned, and all the symmetry-allowed Raman modes (11A1+6A2) in the low-symmetry phase Td-MoTe2 (10 K) and 12 Raman phonons (8A1+4A2) in Td-WTe2 were observed and identified. The present work provides basic information about the lattice dynamics in transition-metal dichalcogenides and may shed some light on the understanding of the extremely large magnetoresistance (MR) in this class of materials.