Exploring extra dimensions with scalar waves


الملخص بالإنكليزية

This paper provides a pedagogical introduction to the physics of extra dimensions focussing on the ADD, Randall-Sundrum and DGP models. In each of these models, the familiar particles and fields of the standard model are assumed to be confined to a four dimensional space-time called the brane; the brane is a slice through a higher dimensional space-time called the bulk. The geometry of the ADD, Randall-Sundrum and DGP space-times is described and the relation between Randall-Sundrum and Anti-de-Sitter space-time is explained. The necessary differential geometry background is introduced in an appendix that presumes no greater mathematical preparation than multivariable calculus. The ordinary wave equation and the Klein-Gordon equation are briefly reviewed followed by an analysis of the propagation of scalar waves in the bulk in all three extra-dimensional models. We also calculate the scalar field produced by a static point source located on the brane for all three models. For the ADD and Randall-Sundrum models at large distances the field looks like that of a point source in four space-time dimensions but at short distances it crosses over to a form appropriate to the higher dimensional space-time. For the DGP model the field has the higher dimensional form at long distances rather than short. The scalar field results provide qualitative insights into the corresponding behavior of gravitational fields. In particular the explanation within the ADD and Randall-Sundrum model of the weakness of gravity compared to other forces is discussed as are the implications of the two models for colliders and other experiments.

تحميل البحث