Overview of HiFi -- implicit spectral element code framework for multi-fluid plasma applications


الملخص بالإنكليزية

An overview of the algorithm and a sampling of plasma applications of the implicit, adaptive high order finite (spectral) element modeling framework, HiFi, is presented. The distinguishing capabilities of the HiFi code include adaptive spectral element spatial representation with flexible geometry, highly parallelizable implicit time advance, and general flux-source form of the partial differential equations and boundary conditions that can be implemented in its framework. Early algorithm development and extensive verification studies of the two-dimensional version of the code, known as SEL, have been previously described [A.H. Glasser & X.Z. Tang, Comp. Phys. Comm., 164 (2004); V.S. Lukin, Ph.D. thesis, Princeton University (2008)]. Here, substantial algorithmic improvements and extensions are presented together with examples of two- and three- dimensional applications of the HiFi framework. These include a Cartesian two-dimensional incompressible magnetohydrodynamic simulation of low dissipation magnetic reconnection in a large system, a two-dimensional axisymmetric simulation of self-similar compression of a magnetic plasma confinement configuration, and a three-dimensional Hall MHD simulation of spheromak tilting and relaxation. Some planned efforts to further improve and expand the capabilities of the HiFi modeling framework are discussed.

تحميل البحث