Approximated integrability of the Dicke model


الملخص بالإنكليزية

A very approximate second integral of motion of the Dicke model is identified within a broad region above the ground state, and for a wide range of values of the external parameters. This second integral, obtained from a Born Oppenheimer approximation, classifies the whole regular part of the spectrum in bands labelled by its corresponding eigenvalues. Results obtained from this approximation are compared with exact numerical diagonalization for finite systems in the superradiant phase, obtaining a remarkable accord. The region of validity of our approach in the parameter space, which includes the resonant case, is unveiled. The energy range of validity goes from the ground state up to a certain upper energy where chaos sets in, and extends far beyond the range of applicability of a simple harmonic approximation around the minimal energy configuration. The upper energy validity limit increases for larger values of the coupling constant and the ratio between the level splitting and the frequency of the field. These results show that the Dicke model behaves like a two-degree of freedom integrable model for a wide range of energies and values of the external parameters.

تحميل البحث