Dynamically Generated Patterns in Dense Suspensions of Active Filaments


الملخص بالإنكليزية

We use Langevin dynamics simulations to study dynamical behaviour of a dense planar layer of active semi-flexible filaments. Using the strength of active force and the thermal persistence length as parameters, we map a detailed phase diagram and identify several non-equilibrium phases in this system. In addition to a slowly flowing melt phase, we observe that for sufficiently high activity, collective flow accompanied by signatures of local polar and nematic order appears in the system. This state is also characterised by strong density fluctuations. Furthermore, we identify an activity-driven cross-over from this state of coherently flowing bundles of filaments to a phase with no global flow, formed by individual filaments coiled into rotating spirals. This suggests a mechanism where the system responds to activity by changing the shape of active agents, an effect with no analogue in systems of active particles without internal degrees of freedom.

تحميل البحث