Energy-Efficient UAV Communication with Trajectory Optimization


الملخص بالإنكليزية

Wireless communication with unmanned aerial vehicles (UAVs) is a promising technology for future communication systems. In this paper, we study energy-efficient UAV communication with a ground terminal via optimizing the UAVs trajectory, a new design paradigm that jointly considers both the communication throughput and the UAVs energy consumption. To this end, we first derive a theoretical model on the propulsion energy consumption of fixed-wing UAVs as a function of the UAVs flying speed, direction and acceleration, based on which the energy efficiency of UAV communication is defined. Then, for the case of unconstrained trajectory optimization, we show that both the rate-maximization and energy-minimization designs lead to vanishing energy efficiency and thus are energy-inefficient in general. Next, we introduce a practical circular UAV trajectory, under which the UAVs flight radius and speed are optimized to maximize the energy efficiency for communication. Furthermore, an efficient design is proposed for maximizing the UAVs energy efficiency with general constraints on its trajectory, including its initial/final locations and velocities, as well as maximum speed and acceleration. Numerical results show that the proposed designs achieve significantly higher energy efficiency for UAV communication as compared with other benchmark schemes.

تحميل البحث