Quantum mean-field approximation for lattice quantum models: truncating quantum correlations, and retaining classical ones


الملخص بالإنكليزية

In a recent work [D. Malpetti and T. Roscilde, arXiv:1605.04223] we have shown that in quantum many-body systems at finite temperature, two-point correlations can be formally separated into a thermal part, and a quantum part -- and that generically quantum correlations decay exponentially at finite temperature, with a characteristic, temperature-dependent quantum coherence length. The existence of these two different forms of correlation in quantum many-body systems suggests the possibility of formulating an approximation which affects quantum correlations only, without preventing the correct description of classical fluctuations at all length scales. Focusing on lattice boson and quantum Ising models, we make use of the path-integral formulation of quantum statistical mechanics to introduce such an approximation -- that we dub emph{quantum mean-field} (QMF) approach, and which can be readily generalized to a cluster form (cluster QMF or cQMF). The cQMF approximation reduces to cluster mean-field theory at $T=0$, while at any finite temperature it produces a family of systematically improved, semi-classical approximations to the quantum statistical mechanics of the lattice theory at hand. Contrary to standard MF approximations, the correct nature of thermal critical phenomena is captured by any cluster size. In the two exemplary cases of the two-dimensional quantum Ising model and of two-dimensional quantum rotors, we study systematically the convergence of the cQMF approximation towards the exact result, and show that the convergence is typically linear or sub-linear in the { boundary-to-bulk ratio} of the clusters as $Tto 0$, while it becomes faster than linear as $T$ grows. These results pave the way towards the development of semi-classical numerical approaches based on an approximate, { yet} systematically improved account of quantum correlations.

تحميل البحث