Upper critical field and quantum oscillations in tetragonal superconducting FeS


الملخص بالإنكليزية

The magnetoresistance and magnetic torque of FeS are measured in magnetic fields $B$ of up to 18 T down to a temperature of 0.03 K. The superconducting transition temperature is found to be $T_c$ = 4.1 K, and the anisotropy ratio of the upper critical field $B_{c2}$ at $T_c$ is estimated from the initial slopes to be $Gamma(T_c)$ = 6.9. $B_{c2}(0)$ is estimated to be 2.2 and 0.36 T for $B parallel ab$ and $c$, respectively. Quantum oscillations are observed in both the resistance and torque. Two frequencies $F$ = 0.15 and 0.20 kT are resolved and assigned to a quasi-two-dimensional Fermi surface cylinder. The carrier density and Sommerfeld coefficient associated with this cylinder are estimated to be 5.8 $times$ 10$^{-3}$ carriers/Fe and 0.48 mJ/(K$^2$mol), respectively. Other Fermi surface pockets still remain to be found. Band-structure calculations are performed and compared to the experimental results.

تحميل البحث