Correction terms and the non-orientable slice genus


الملخص بالإنكليزية

By considering negative surgeries on a knot $K$ in $S^3$, we derive a lower bound to the non-orientable slice genus $gamma_4(K)$ in terms of the signature $sigma(K)$ and the concordance invariants $V_i(overline{K})$, which strengthens a previous bound given by Batson, and which coincides with Ozsvath-Stipsicz-Szabos bound in terms of their $upsilon$ invariant for L-space knots and quasi-alternating knots. A curious feature of our bound is superadditivity, implying, for instance, that the bound on the stable non-orientable genus is sometimes better than the one on $gamma_4(K)$.

تحميل البحث