In the large D limit, and under certain circumstances, it has recently been demonstrated that black hole dynamics in asymptotically flat spacetime reduces to the dynamics of a non gravitational membrane propagating in flat D dimensional spacetime. We demonstrate that this correspondence extends to all orders in a 1/D expansion and outline a systematic method for deriving the corrected membrane equation in a power series expansion in 1/D. As an illustration of our method we determine the first subleading corrections to the membrane equations of motion. A qualitatively new effect at this order is that the divergence of the membrane velocity is nonzero and proportional to the square of the shear tensor reminiscent of the entropy current of hydrodynamics. As a test, we use our modified membrane equations to compute the corrections to frequencies of light quasinormal modes about the Schwarzschild black hole and find a perfect match with earlier computations performed directly in the gravitational bulk.