Leibniz algebras associated with representations of Euclidean Lie algebra


الملخص بالإنكليزية

In the present paper we describe Leibniz algebras with three-dimensional Euclidean Lie algebra $mathfrak{e}(2)$ as its liezation. Moreover, it is assumed that the ideal generated by the squares of elements of an algebra (denoted by $I$) as a right $mathfrak{e}(2)$-module is associated to representations of $mathfrak{e}(2)$ in $mathfrak{sl}_2({mathbb{C}})oplus mathfrak{sl}_2({mathbb{C}}), mathfrak{sl}_3({mathbb{C}})$ and $mathfrak{sp}_4(mathbb{C})$. Furthermore, we present the classification of Leibniz algebras with general Euclidean Lie algebra ${mathfrak{e(n)}}$ as its liezation $I$ being an $(n+1)$-dimensional right ${mathfrak{e(n)}}$-module defined by transformations of matrix realization of $mathfrak{e(n)}.$ Finally, we extend the notion of a Fock module over Heisenberg Lie algebra to the case of Diamond Lie algebra $mathfrak{D}_k$ and describe the structure of Leibniz algebras with corresponding Lie algebra $mathfrak{D}_k$ and with the ideal $I$ considered as a Fock $mathfrak{D}_k$-module.

تحميل البحث