Pseudomagnetic fields for sound at the nanoscale


الملخص بالإنكليزية

There is a growing effort in creating chiral transport of sound waves. However, most approaches so far are confined to the macroscopic scale. Here, we propose a new approach suitable to the nanoscale which is based on pseudomagnetic fields. These fields are the analogon for sound of the pseudomagnetic field for electrons in strained graphene. In our proposal, they are created by simple geometrical modifications of an existing and experimentally proven phononic crystal design, the snowflake crystal. This platform is robust, scalable, and well-suited for a variety of excitation and readout mechanisms, among them optomechanical approaches.

تحميل البحث