Crossover from one- to three-dimensional behavior in the S = 1/2 Heisenberg antiferromagnet Cu(N2H5)2(SO4)2


الملخص بالإنكليزية

From experimental and theoretical analyses of magnetic and specific-heat properties, we present the complete magnetic phase diagram of the quasi-one-dimensional antiferromagnet Cu(N$_2$H$_5$)$_2$(SO$_4$)$_2$. On cooling and at zero magnetic field this compound enters a one-dimensional regime with short-range magnetic correlations, marked by a broad maximum in the specific heat and magnetic susceptibility at $T_mathrm{max}sim 2,mathrm{K}$, followed by an ordered antiferromagnetic phase below $T_mathrm{N}sim 1,mathrm{K}$ induced by small interchain couplings. The intermediate-temperate one-dimensional regime can be modeled using exact quantum-transfer-matrix calculations, which perfectly describe the nonmonotonic behavior of T_max as a function of the magnetic field, giving $J = 4.25,mathrm{K}$ for the intrachain exchange parameter. The analysis of magnetic specific-heat and susceptibility data at low temperature indicates that the interchain exchange couplings are an order of magnitude smaller than the coupling inside the chains.

تحميل البحث