Some Results on Cyclic Interval Edge Colorings of Graphs


الملخص بالإنكليزية

A proper edge coloring of a graph $G$ with colors $1,2,dots,t$ is called a emph{cyclic interval $t$-coloring} if for each vertex $v$ of $G$ the edges incident to $v$ are colored by consecutive colors, under the condition that color $1$ is considered as consecutive to color $t$. We prove that a bipartite graph $G$ with even maximum degree $Delta(G)geq 4$ admits a cyclic interval $Delta(G)$-coloring if for every vertex $v$ the degree $d_G(v)$ satisfies either $d_G(v)geq Delta(G)-2$ or $d_G(v)leq 2$. We also prove that every Eulerian bipartite graph $G$ with maximum degree at most $8$ has a cyclic interval coloring. Some results are obtained for $(a,b)$-biregular graphs, that is, bipartite graphs with the vertices in one part all having degree $a$ and the vertices in the other part all having degree $b$; it has been conjectured that all these have cyclic interval colorings. We show that all $(4,7)$-biregular graphs as well as all $(2r-2,2r)$-biregular ($rgeq 2$) graphs have cyclic interval colorings. Finally, we prove that all complete multipartite graphs admit cyclic interval colorings; this settles in the affirmative, a conjecture of Petrosyan and Mkhitaryan.

تحميل البحث