Brane involutions on irreducible holomorphic symplectic manifolds


الملخص بالإنكليزية

In the context of irreducible holomorphic symplectic manifolds, we say that (anti)holomorphic (anti)symplectic involutions are brane involutions since their fixed point locus is a brane in the physicists language, i.e. a submanifold which is either complex or lagrangian submanifold with respect to each of the three Kahler structures of the associated hyperkahler structure. Starting from a brane involution on a K3 or abelian surface, one can construct a natural brane involution on its moduli space of sheaves. We study these natural involutions and their relation with the Fourier--Mukai transform. Later, we recall the lattice-theoretical approach to Mirror Symmetry. We provide two ways of obtaining a brane involution on the mirror and we study the behaviour of the brane involutions under both mirror transformations, giving examples in the case of a K3 surface and $K3^{[2]}$-type manifolds.

تحميل البحث