Optimal Evacuation Flows on Dynamic Paths with General Edge Capacities


الملخص بالإنكليزية

A Dynamic Graph Network is a graph in which each edge has an associated travel time and a capacity (width) that limits the number of items that can travel in parallel along that edge. Each vertex in this dynamic graph network begins with the number of items that must be evacuated into designated sink vertices. A $k$-sink evacuation protocol finds the location of $k$ sinks and associated evacuation movement protocol that allows evacuating all the items to a sink in minimum time. The associated evacuation movement must impose a confluent flow, i.e, all items passing through a particular vertex exit that vertex using the same edge. In this paper we address the $k$-sink evacuation problem on a dynamic path network. We provide solutions that run in $O(n log n)$ time for $k=1$ and $O(k n log^2 n)$ for $k >1$ and work for arbitrary edge capacities.

تحميل البحث