A note on Jones polynomial and cosmetic surgery


الملخص بالإنكليزية

We show that two Dehn surgeries on a knot $K$ never yield manifolds that are homeomorphic as oriented manifolds if $V_K(1) eq 0$ or $V_K(1) eq 0$. As an application, we verify the cosmetic surgery conjecture for all knots with no more than $11$ crossings except for three $10$-crossing knots and five $11$-crossing knots. We also compute the finite type invariant of order $3$ for two-bridge knots and Whitehead doubles, from which we prove several nonexistence results of purely cosmetic surgery.

تحميل البحث