Quiver varieties and crystals in symmetrizable type via modulated graphs


الملخص بالإنكليزية

Kashiwara and Saito have a geometric construction of the infinity crystal for any symmetric Kac-Moody algebra. The underlying set consists of the irreducible components of Lusztigs quiver varieties, which are varieties of nilpotent representations of a pre-projective algebra. We generalize this to symmetrizable Kac-Moody algebras by replacing Lusztigs preprojective algebra with a more general one due to Dlab and Ringel. In non-symmetric types we are forced to work over non-algebraically-closed fields.

تحميل البحث