We study linear and nonlinear stability of asymptotically AdS$_4$ solutions in Einstein-Maxwell-scalar theory. After summarizing the set of static solutions we first examine thermodynamical stability in the grand canonical ensemble and the phase transitions that occur among them. In the second part of the paper we focus on nonlinear stability in the microcanonical ensemble by evolving radial perturbations numerically. We find hints of an instability corner for vanishingly small perturbations of the same kind as the ones present in the uncharged case. Collapses are avoided, instead, if the charge and mass of the perturbations come to close the line of solitons. Finally we examine the soliton solutions. The linear spectrum of normal modes is not resonant and instability turns on at extrema of the mass curve. Linear stability extends to nonlinear stability up to some threshold for the amplitude of the perturbation. Beyond that, the soliton is destroyed and collapses to a hairy black hole. The relative width of this stability band scales down with the charge Q, and does not survive the blow up limit to a planar geometry.