The Yuan-Tseh Lee Array for Microwave Background Anisotropy (AMiBA) is a co-planar interferometer array operating at a wavelength of 3mm to measure the Sunyaev-Zeldovich effect (SZE) of galaxy clusters. In the first phase of operation -- with a compact 7-element array with 0.6m antennas (AMiBA-7) -- we observed six clusters at angular scales from 5arcmin to 23arcmin. Here, we describe the expansion of AMiBA to a 13-element array with 1.2m antennas (AMiBA-13), its subsequent commissioning, and our cluster SZE observing program. The most important changes compared to AMiBA-7 are (1) array re-configuration with baselines ranging from 1.4m to 4.8m covering angular scales from 2arcmin to 11.5arcmin, (2) thirteen new lightweight carbon-fiber-reinforced plastic (CFRP) 1.2m reflectors, and (3) additional correlators and six new receivers. From the AMiBA-13 SZE observing program, we present here maps of a subset of twelve clusters. In highlights, we combine AMiBA-7 and AMiBA-13 observations of Abell 1689 and perform a joint fitting assuming a generalized NFW pressure profile. Our cylindrically integrated Compton-y values for this cluster are consistent with the BIMA/OVRA, SZA, and Planck results. We report the first targeted SZE detection towards the optically selected galaxy cluster RCS J1447+0828, and we demonstrate the ability of AMiBA SZE data to serve as a proxy for the total cluster mass. Finally, we show that our AMiBA-SZE derived cluster masses are consistent with recent lensing mass measurements in the literature.