Enhanced light-vapor interactions and all optical switching in a chip scale micro-ring resonator coupled with atomic vapor


الملخص بالإنكليزية

The coupling of atomic and photonic resonances serves as an important tool for enhancing light-matter interactions and enables the observation of multitude of fascinating and fundamental phenomena. Here, by exploiting the platform of atomic-cladding wave guides, we experimentally demonstrate the resonant coupling of rubidium vapor and an atomic cladding micro ring resonator. Specifically, we observed cavity-atom coupling in the form of Fano resonances having a distinct dependency on the relative frequency detuning between the photonic and the atomic resonances. Moreover, we were able to significantly enhance the efficiency of all optical switching in the V-type pump-probe scheme. The coupled system of micro-ring resonator and atomic vapor is a promising building block for a variety of light vapor experiments, as it offers a very small footprint, high degree of integration and extremely strong confinement of light and vapor. As such it may be used for important applications, such as all optical switching, dispersion engineering (e.g. slow and fast light) and metrology, as well as for the observation of important effects such as strong coupling, Purcell enhancement and bistability.

تحميل البحث