We consider an optimization deployment problem of multistatic radar system (MSRS). Through the antenna placing and the transmitted power allocating, we optimally deploy the MSRS for two goals: 1) the first one is to improve the coverage ratio of surveillance region; 2) the second goal is to get a even distribution of signal energy in surveillance region. In two typical working modes of MSRS, we formulate the optimization problem by introducing two objective functions according to the two mentioned goals, respectively. Addressing on two main challenges of applying multi-objective particle swarm optimization (MOPSO) in solving the proposed optimization problem, we propose a deployment algorithm based on multiobjective particle swarm optimization with non-dominated relative crowding distance (MOPSO-NRCD). For the challenge of value difference, we propose a novel selection method with a non-dominated relative crowding distance. For the challenge of particle allocation, a multi-swarm structure of MOPSO is also introduced. Finally, simulation results are given out to prove the advantages and validity of the proposed deployment algorithm. It is shown that with same number of employed particles, the proposed MOPSO-NRCD algorithm can achieve better optimization performance than that of traditional multiobjective particle swarm optimization with crowding distance (MOPSO-CD).