Wilf classification of triples of 4-letter patterns


الملخص بالإنكليزية

We determine all 242 Wilf classes of triples of 4-letter patterns by showing that there are 32 non-singleton Wilf classes. There are 317 symmetry classes of triples of 4-letter patterns and after computer calculation of initial terms, the problem reduces to showing that counting sequences that appear to be the same (agree in the first 16 terms) are in fact identical. The insertion encoding algorithm (INSENC) accounts for many of these and some others have been previously counted; in this paper, we find the generating function for each of the remaining 36 triples and it turns out to be algebraic in every case. Our methods are both combinatorial and analytic, including decompositions by left-right maxima and by initial letters. Sometimes this leads to an algebraic equation for the generating function, sometimes to a functional equation or a multi-index recurrence that succumbs to the kernel method. A particularly nice so-called cell decomposition is used in one case and a bijection is used for another.

تحميل البحث