Defect engineering of the electronic transport through cuprous oxide interlayers


الملخص بالإنكليزية

The electronic transport through Au-(Cu$_{2}$O)$_n$-Au junctions is investigated using first-principles calculations and the nonequilibrium Greens function method. The effect of varying the thickness (i.e., $n$) is studied as well as that of point defects and anion substitution. For all Cu$_{2}$O thicknesses the conductance is more enhanced by bulk-like (in contrast to near-interface) defects, with the exception of O vacancies and Cl substitutional defects. A similar transmission behavior results from Cu deficiency and N substitution, as well as from Cl substitution and N interstitials for thick Cu$_{2}$O junctions. In agreement with recent experimental observations, it is found that N and Cl doping enhances the conductance. A Frenkel defect, i.e., a superposition of an O interstitial and O substitutional defect, leads to a remarkably high conductance. From the analysis of the defect formation energies, Cu vacancies are found to be particularly stable, in agreement with earlier experimental and theoretical work.

تحميل البحث