Neutrino masses and superheavy dark matter in the 3-3-1-1 model


الملخص بالإنكليزية

In this work, we interpret the 3-3-1-1 model when the B-L and 3-3-1 breaking scales behave simultaneously as the inflation scale. This setup not only realizes the previously-achieved consequences of inflation and leptogenesis, but also provides new insights in superheavy dark matter and neutrino masses. We argue that the 3-3-1-1 model can incorporate a scalar sextet, which induces both small masses for the neutrinos via a combined type I and II seesaw and large masses for the new neutral fermions. Additionally, all the new particles have the large masses in the inflation scale. The lightest particle among the W-particles that have abnormal (i.e., wrong) B-L number in comparison to those of the standard model particles may be a superheavy dark matter as it is stabilized by the W-parity. The dark matter candidate may be a Majorana fermion, a neutral scalar, or a neutral gauge boson, which was properly created in the early universe due to the gravitational effects on the vacuum or the thermal production after cosmic inflation.

تحميل البحث