Tuning of magnetic quantum criticality in artificial Kondo superlattice CeRhIn5/YbRhIn5


الملخص بالإنكليزية

The effects of reduced dimensions and the interfaces on antiferromagnetic quantum criticality are studied in epitaxial Kondo superlattices, with alternating $n$ layers of heavy-fermion antiferromagnet CeRhIn$_5$ and 7 layers of normal metal YbRhIn$_5$. As $n$ is reduced, the Kondo coherence temperature is suppressed due to the reduction of effective Kondo screening. The N{e}el temperature is gradually suppressed as $n$ decreases and the quasiparticle mass is strongly enhanced, implying dimensional control toward quantum criticality. Magnetotransport measurements reveal that a quantum critical point is reached for $n=3$ superlattice by applying small magnetic fields. Remarkably, the anisotropy of the quantum critical field is opposite to the expectations from the magnetic susceptibility in bulk CeRhIn$_5$, suggesting that the Rashba spin-orbit interaction arising from the inversion symmetry breaking at the interface plays a key role for tuning the quantum criticality in the two-dimensional Kondo lattice.

تحميل البحث