Renormalization group theory does not restrict the from of continuous variation of critical exponents which occurs in presence of a marginal operator. However, the continuous variation of critical exponents, observed in different contexts, usually follows a weak universality scenario where some of the exponents (e.g., $beta, gamma, u$) vary keeping others (e.g., $delta , eta$) fixed. Here we report a ferromagnetic phase transition in (Sm$_{1-y}$Nd$_{y}$)$_{0.52}$Sr$_{0.48}$MnO$_3$ $(0.5le yle1)$ single crystal where all critical exponents vary with $y.$ Such variation clearly violates both universality and weak universality hypothesis. We propose a new scaling theory that explains the present experimental results, reduces to the weak universality as a special case, and provides a generic route leading to continuous variation of critical exponents and multicriticality.