We report the first observation of coherent surface states on cubic perovskite oxide SrVO3(001) thin films through spectroscopic imaging scanning tunneling microscopy. A direct link between the observed atomic-scale interference patterns and the formation of a dxy-derived surface state is supported by first-principles calculations. Furthermore, we show that the apical oxygens on the topmost VO2 plane play a critical role in controlling the spectral weight of the observed coherent surface state.