We report the results of a wide field CO mapping in the region of IRAS 19312+1950. This IRAS object exhibits SiO/H$_2$O/OH maser emission, and is embedded in a chemically-rich molecular component, of which the origin is still unknown. In order to reveal the entire structure and gas mass of the surrounding molecular component for the first time, we have mapped a wide region around IRAS 19312+1950 in the $^{12}$CO $J=1-0$, $^{13}$CO $J=1-0$ and C$^{18}$O $J=1-0$ lines using the Nobeyama 45m telescope. In conjunction with the archival CO maps, we investigated a region with a size up to $20 times 20$ around this IRAS object. We calculated CO gas mass assuming the LTE condition, a stellar velocity against to the interstellar medium assuming an analytic model of a bow shock, and absolute luminosity using the latest archival data and trigonometric parallax distance. The derived gas-mass (225 M$_{odot}$ $-$ 478 M$_{odot}$) of the molecular component and the relatively large luminosity ($2.63times10^{4}$ L$_{odot}$) suggest that the central SiO/H$_2$O/OH maser source seems to be a red supergiant (RSG) rather than an asymptotic giant branch (AGB) star or post-AGB star.