We construct geometric models for classifying spaces of linear algebraic groups in G-equivariant motivic homotopy theory, where G is a tame group scheme. As a consequence, we show that the equivariant motivic spectrum representing the homotopy K-theory of G-schemes (which we construct as an E-infinity-ring) is stable under arbitrary base change, and we deduce that homotopy K-theory of G-schemes satisfies cdh descent.