On Induced Colourful Paths in Triangle-free Graphs


الملخص بالإنكليزية

Given a graph $G=(V,E)$ whose vertices have been properly coloured, we say that a path in $G$ is colourful if no two vertices in the path have the same colour. It is a corollary of the Gallai-Roy-Vitaver Theorem that every properly coloured graph contains a colourful path on $chi(G)$ vertices. We explore a conjecture that states that every properly coloured triangle-free graph $G$ contains an induced colourful path on $chi(G)$ vertices and prove its correctness when the girth of $G$ is at least $chi(G)$. Recent work on this conjecture by Gyarfas and Sarkozy, and Scott and Seymour has shown the existence of a function $f$ such that if $chi(G)geq f(k)$, then an induced colourful path on $k$ vertices is guaranteed to exist in any properly coloured triangle-free graph $G$.

تحميل البحث