Pressure tuning the Fermi-surface topology of the Weyl semimetal NbP


الملخص بالإنكليزية

We report on the pressure evolution of the Fermi surface topology of the Weyl semimetal NbP, probed by Shubnikov-de Haas oscillations in the magnetoresistance combined with ab-initio calculations of the band-structure. Although we observe a drastic effect on the amplitudes of the quantum oscillations, the frequencies only exhibit a weak pressure dependence up to 2.8 GPa. The pressure-induce variations in the oscillation frequencies are consistent with our band-structure calculations. Furthermore, we can relate the changes in the amplitudes to small modifications in the shape of the Fermi surface. Our findings evidenced the stability of the electronic band structure of NbP and demonstrate the power of combining quantum-oscillation studies and band-structure calculations to investigate pressure effects on the Fermi-surface topology in Weyl semimetals.

تحميل البحث