We report on the temperature and layer thickness variation of spin-orbit torques in perpendicularly magnetized W/CoFeB bilayers. Harmonic Hall voltage measurements reveal dissimilar temperature evolutions of longitudinal and transverse effective magnetic field components. The transverse effective field changes sign at 250 K for a 2 nm thick W buffer layer, indicating a much stronger contribution from interface spin-orbit interactions compared to, for example, Ta. Transmission electron microscopy measurements reveal that considerable interface mixing between W and CoFeB is primarily responsible for this effect.