Using derived previously effective theory we explore conductance in the Luttinger model with one impurity. A new approach to the renormalization group (RG) analysis of this model is developed. It is based on the original Gell-Mann-Low formulation of RG. We sum up infrared logarithmic contibutions to conductance in the leading and few subsequent approximations. We analyze the validity of widely used ``poor mans scaling approach and find that it is applicable only in the leading approximation. Our results for corrections to this approximation are different from results obtained in other papers. It should be expected beforehand, as Gell-Mann-Low function of the model is not regularization scheme invariant. For this reason the observed quantity (e.g., conductance) can not satisfy the Gell-Mann-Low equation beyond the leading-log approximation as it is supposed in the poor mans approach. We formulate the method to calculate the conductance from renormalized hamiltonian in the post-leading approximations and match results to the case of weak impurity where the answer is known in any order in electron-electron interaction.