A conceptually simpler proof of the separability criterion for two-qubit systems, which is referred to as Hefei inequality in literature, is presented. This inequality gives a necessary and sufficient separability criterion for any mixed two-qubit system unlike the Bell-CHSH inequality that cannot test the mixed-states such as the Werner state when regarded as a separability criterion. The original derivation of this inequality emphasized the uncertainty relation of complementary observables, but we show that the uncertainty relation does not play any role in the actual derivation and the Peres-Hodrodecki condition is solely responsible for the inequality. Our derivation, which contains technically novel aspects such as an analogy to the Dirac equation, sheds light on this inequality and on the fundamental issue to what extent the uncertainty relation can provide a test of entanglement. This separability criterion is illustrated for an exact treatment of the Werner state.