We study the new concept of relative coobservability in decentralized supervisory control of discrete-event systems under partial observation. This extends our previous work on relative observability from a centralized setup to a decentralized one. A fundamental concept in decentralized supervisory control is coobservability (and its several variations); this property is not, however, closed under set union, and hence there generally does not exist the supremal element. Our proposed relative coobservability, although stronger than coobservability, is algebraically well-behaved, and the supremal relatively coobservable sublanguage of a given language exists. We present an algorithm to compute this supremal sublanguage. Moreover, relative coobservability is weaker than conormality, which is also closed under set union; unlike conormality, relative coobservability imposes no constraint on disabling unobservable controllable events.