Vacuum Incalescence


الملخص بالإنكليزية

In quantum theory the vacuum is defined as a state of minimum energy that is devoid of particles but still not completely empty. It is perhaps more surprising that its definition depends on the geometry of the system and on the trajectory of an observer through space-time. Along these lines we investigate the case of an atom flying at constant velocity near a planar surface. Using general concepts of statistical mechanics it is shown that the motion-modified interaction with the electromagnetic vacuum is formally equivalent to the interaction with a thermal field having an effective temperature determined by the atoms velocity and distance from the surface. This result suggests new ways to experimentally investigate the properties of the quantum vacuum in non-equilibrium systems and effects such as quantum friction.

تحميل البحث