Electronic Evidence for Type II Weyl Semimetal State in MoTe2


الملخص بالإنكليزية

Topological quantum materials, including topological insulators and superconductors, Dirac semimetals and Weyl semimetals, have attracted much attention recently for their unique electronic structure, spin texture and physical properties. Very lately, a new type of Weyl semimetals has been proposed where the Weyl Fermions emerge at the boundary between electron and hole pockets in a new phase of matter, which is distinct from the standard type I Weyl semimetals with a point-like Fermi surface. The Weyl cone in this type II semimetals is strongly tilted and the related Fermi surface undergos a Lifshitz transition, giving rise to a new kind of chiral anomaly and other new physics. MoTe2 is proposed to be a candidate of a type II Weyl semimetal; the sensitivity of its topological state to lattice constants and correlation also makes it an ideal platform to explore possible topological phase transitions. By performing laser-based angle-resolved photoemission (ARPES) measurements with unprecedentedly high resolution, we have uncovered electronic evidence of type II semimetal state in MoTe2. We have established a full picture of the bulk electronic states and surface state for MoTe2 that are consistent with the band structure calculations. A single branch of surface state is identified that connects bulk hole pockets and bulk electron pockets. Detailed temperature-dependent ARPES measurements show high intensity spot-like features that is ~40 meV above the Fermi level and is close to the momentum space consistent with the theoretical expectation of the type II Weyl points. Our results constitute electronic evidence on the nature of the Weyl semimetal state that favors the presence of two sets of type II Weyl points in MoTe2.

تحميل البحث